
R introductory course

Daniele Amberti and Longhow Lam

Nov-2011

daniele dot amberti at gmail dot com

1

Contents

1 Introduction 6
1.1 What is R? . 6
1.2 The R environment . 7
1.3 Obtaining and installing R . 7
1.4 Your first R session . 8
1.5 The available help . 11

1.5.1 The on line help . 11
1.5.2 The R mailing lists and the R Journal 12

1.6 The R workspace, managing objects . 13
1.7 R Packages . 13
1.8 Conflicting objects . 15
1.9 Editors for R scripts, notebook graphical user interfaces 16

1.9.1 The editor in RGui . 16
1.9.2 Other editors . 16

1.10 Menus and dialog boxes graphical user interfaces 19

2 Data Objects 24
2.1 Data types . 24

2.1.1 Double . 24
2.1.2 Character . 25
2.1.3 Logical . 26
2.1.4 Integer . 27
2.1.5 Factor . 28
2.1.6 Dates and Times . 30
2.1.7 Complex . 32
2.1.8 Missing data and Infinite values 33

2.2 Data structures . 33
2.2.1 Vectors . 34
2.2.2 Matrices . 37
2.2.3 Arrays . 40
2.2.4 Data frames . 41
2.2.5 Time-series objects . 44
2.2.6 Lists . 44
2.2.7 The str function . 48

3 Importing data 49

2

3.1 Text files . 49
3.1.1 The scan function . 50

3.2 Excel files . 51
3.3 The Foreign package . 51

4 Data Manipulation 52
4.1 Vector subscripts . 52
4.2 Matrix subscripts . 53
4.3 Manipulating Data frames . 55

4.3.1 Extracting data from data frames 55

5 Statistics 58
5.1 Basic statistical functions . 58

5.1.1 Statistical summaries and tests 58
5.2 Regression models . 60

5.2.1 Linear regression models . 60

Bibliography 61

Index 62

3

List of Figures

1.1 The R system on Windows . 8
1.2 R integrated in the RStudio development environment 17
1.3 R integrated in the Eclipse development environment 18
1.4 The Tinn-R and an the R Console environment 19
1.5 The JGR interface . 21
1.6 The Rcmdr interface . 22
1.7 The Deducer interface . 23

4

This handout is based on ‘An Itnroduction to R’ by Longhow Lam, see [1].

5

1 Introduction

1.1 What is R?

While the commercial implementation of S, S-PLUS, is struggling to keep its existing
users, the open source version of S, R, has received a lot of attention in the last five
years. Not only because the R system is a free tool, the system has proven to be a
very effective tool in data manipulation, data analysis, graphing and developing new
functionality. The user community has grown enormously the last years, and it is an
active user community writing new R packages that are made available to others.

If you have any questions or comments on this document please do not hesitate to contact
me.

The best explanation of R is given on the R web site http://www.r-project.org. The
remainder of this section and the following section are taken from the R web site.

R is a language and environment for statistical computing and graphics. It is a GNU
project which is similar to the S language and environment which was developed at
Bell Laboratories (formerly AT&T, now Lucent Technologies) by John Chambers and
colleagues. R can be considered as a different implementation of S. There are some
important differences, but much code written for S runs unaltered under R.

R provides a wide variety of statistical (linear and non linear modeling, classical statis-
tical tests, time-series analysis, classification, clustering, ...) and graphical techniques,
and is highly extensible. The S language is often the vehicle of choice for research in
statistical methodology, and R provides an Open Source route to participation in that
activity.

One of R’s strengths is the ease with which well-designed publication-quality plots can
be produced, including mathematical symbols and formulae where needed. Great care
has been taken over the defaults for the minor design choices in graphics, but the user
retains full control.

R is available as Free Software under the terms of the Free Software Foundation’s GNU
General Public License in source code form. It compiles and runs on a wide variety
of UNIX platforms and similar systems (including FreeBSD and Linux), Windows and
MacOS.

6

CHAPTER 1. INTRODUCTION 1.2. THE R ENVIRONMENT

1.2 The R environment

R is an integrated suite of software facilities for data manipulation, calculation and
graphical display. It includes

� an effective data handling and storage facility,

� a suite of operators for calculations on arrays, in particular matrices,

� a large, coherent, integrated collection of intermediate tools for data analysis,

� graphical facilities for data analysis and display either on-screen or on hardcopy,
and

� a well-developed, simple and effective programming language which includes con-
ditionals, loops, user-defined recursive functions and input and output facilities.

The term ‘environment’ is intended to characterize it as a fully planned and coherent
system, rather than an incremental accretion of very specific and inflexible tools, as is
frequently the case with other data analysis software.

R, like S, is designed around a true computer language, and it allows users to add
additional functionality by defining new functions. Much of the system is itself written
in the R dialect of S, which makes it easy for users to follow the algorithmic choices
made. For computationally-intensive tasks, C, C++ and Fortran code can be linked and
called at run time. Advanced users can write C code to manipulate R objects directly.

Many users think of R as a statistics system. We prefer to think of it of an environment
within which statistical techniques are implemented. R can be extended (easily) via
packages. There are about eight packages supplied with the R distribution and many
more are available through the CRAN family of Internet sites covering a very wide range
of modern statistics.

R has its own LaTeX-like documentation format, which is used to supply comprehensive
documentation, both on-line in a number of formats and in hardcopy.

1.3 Obtaining and installing R

R can be downloaded from the ‘Comprehensive R Archive Network’ (CRAN). You
can download the complete source code of R, but more likely as a beginning R user
you want to download the precompiled binary distribution of R. Go to the R web
site http://www.r-project.org and select a CRAN mirror site (or simply http://cran.r-
project.org) and download the base distribution file, under Windows: R-2.14.0-win.exe.
At the time of writing the latest version is 2.14.0. We will mention user contributed
packages in the next section.

7

CHAPTER 1. INTRODUCTION 1.4. YOUR FIRST R SESSION

The base file has a size of around 45MB, which you can execute to install R. The instal-
lation wizard will guide you through the installation process. It may be useful to install
all the On-line pdf manuals and, under Windows, to customize Internet Access startup
options to make use of Internet Explorer proxy settings. You can select appropriate
options in the installation wizard.

1.4 Your first R session

Start the R system, the main window (RGui) with a sub window (R Console) will appear
as in figure 1.1.

Figure 1.1: The R system on Windows

In the ‘Console’ window the cursor is waiting for you to type in some R commands. For
example, use R as a simple calculator:

> print("Hello world!")

[1] "Hello world!"

8

CHAPTER 1. INTRODUCTION 1.4. YOUR FIRST R SESSION

> 1+1

[1] 2

> 1 + sin(9)

[1] 1.412118

> 234/87754

[1] 0.002666545

> (1 + 0.05)^8

[1] 1.477455

> 23.76*log(8)/(23 + atan(9))

[1] 2.019920

Results of calculations can be stored in objects using the assignment operators:

� An arrow (<-) formed by a smaller than character and a hyphen without a space!

� The equal character (=).

These objects can then be used in other calculations. To print the object just enter the
name of the object. There are some restrictions when giving an object a name:

� A syntactically valid name consists of letters, numbers and the dot (.) or underscore
() characters.

� Object names cannot contain ‘strange’ symbols like !, +, -, #.

� Object names can contain a number but cannot start with a number.

� Object names can start with a dot but not followed by a number.

� R is case sensitive, X and x are two different objects, as well as temp and temP.

� Reserved words in R’s parser are not valid object names.

> x = sin(9)/75

> y = log(x) + x^2

> x

[1] 0.005494913

> y

[1] -5.203902

9

CHAPTER 1. INTRODUCTION 1.4. YOUR FIRST R SESSION

> m <- matrix(c(1,2,4,1), ncol=2)

> m

[,1] [,2]

[1,] 1 4

[2,] 2 1

> solve(m)

[,1] [,2]

[1,] -0.1428571 0.5714286

[2,] 0.2857143 -0.1428571

To list the objects that you have in your current R session use the function ls or the
function objects.

> ls()

[1] "m" "x" "y"

So to run the function ls we need to enter the name followed by an opening (and and a
closing). Entering only ls will just print the object, you will see the underlying R code
of the the function ls. Most functions in R accept certain arguments. For example,
one of the arguments of the function ls is pattern. To list all objects starting with the
letter x:

> x2 = 9

> y2 = 10

> ls(pattern="x")

[1] "x" "x2"

If you assign a value to an object that already exists then the contents of the object will
be overwritten with the new value (without a warning!). Use the function rm to remove
one or more objects from your session.

> rm(x, x2)

To conclude your first session, we create two small vectors with data and a scatterplot.

> z2 <- c(1,2,3,4,5,6)

> z3 <- c(6,8,3,5,7,1)

> plot(z2,z3)

> title("My first scatterplot")

10

CHAPTER 1. INTRODUCTION 1.5. THE AVAILABLE HELP

●

●

●

●

●

●

1 2 3 4 5 6

1
2

3
4

5
6

7
8

z2

z3

My first scatterplot

After this very short R session which barely scratched the surface, we hope you continue
using the R system. The following chapters of this document will explain in detail the
different data types, data structures, functions, plots and data analysis in R.

1.5 The available help

1.5.1 The on line help

There is extensive on line help in the R system, the best starting point is to run the
function help.start(). This will launch a local page inside your browser with links to
the R manuals, R FAQ, a search engine and other links.

In the R Console the function help can be used to see the help file of a specific function.

help(mean)

11

CHAPTER 1. INTRODUCTION 1.5. THE AVAILABLE HELP

Use the function help.search to list help files that contain a certain string.

help.search("reserved")

Help files with alias or concept or title matching 'reserved' using fuzzy matching:

base::Reserved Reserved Words in R

DoE.base::fix Function to preserve class design when editing a design

MASS::npr1 US Naval Petroleum Reserve No. 1 data

quantmod::getSymbols.FRED Download Federal Reserve Economic Data - FRED(R)

Type '?PKG::FOO' to inspect entries 'PKG::FOO', or 'TYPE?PKG::FOO' for entries like

'PKG::FOO-TYPE'.

> help.search("robust")

Help files with alias or concept or title matching 'robust' using fuzzy

matching:

hubers(MASS) Huber Proposal 2 Robust Estimator of Location

and/or Scale

rlm(MASS) Robust Fitting of Linear Models

summary.rlm(MASS) Summary Method for Robust Linear Models

line(stats) Robust Line Fitting

runmed(stats) Running Medians -- Robust Scatter Plot

Smoothing

Type 'help(FOO, package = PKG)' to inspect entry 'FOO(PKG) TITLE'.

The R manuals are also on line available in pdf format. In the RGui window go the help
menu and select ‘manuals in pdf’.

1.5.2 The R mailing lists and the R Journal

There are several mailing lists on R, see the R website. The main mailing list is R-
help, web interfaces are available where you can browse trough the postings or search
for a specific key word. If you have a connection to the internet, then the function
RSiteSearch in R can be used to search for a string in the archives of all the R mailing
lists.

> RSiteSearch("robust")

A search query has been submitted to http://search.r-project.org

The results page should open in your browser shortly

12

CHAPTER 1. INTRODUCTION 1.6. THE R WORKSPACE, . . .

Another very useful webpage on the internet is www.Rseek.org, a sort of R search enigine.
Also take a look at the R Journal, at http://journal.r-project.org.

1.6 The R workspace, managing objects

Objects that you create during an R session are hold in memory, the collection of objects
that you currently have is called the workspace. This workspace is not saved on disk
unless you tell R to do so. This means that your objects are lost when you close R and
not save the objects, or worse when R or your system crashes on you during a session.

When you close the RGui or the R console window, the system will ask if you want to
save the workspace image. If you select to save the workspace image then all the objects
in your current R session are saved in a file .RData. This is a binary file located in the
working directory of R, which is by default the installation directory of R.

During your R session you can also explicitly save the workspace image. Go to the ‘File’
menu and then select ‘Save Workspace...’, or use the save.image function.

> ## save to the current working directory

> save.image()

> ## just checking what the current working directory is

> getwd()

[1] "C:/"

> ## save to a specific file and location

> save.image("C:\\RIntroductoryCourse.RData")

If you have saved a workspace image and you start R the next time, it will restore
the workspace. So all your previously saved objects are available again. You can also
explicitly load a saved workspace file, that could be the workspace image of someone
else. Go the ‘File’ menu and select ‘Load workspace...’.

1.7 R Packages

One of the strengths of R is that the system can easily be extended. The system allows
you to write new functions and package those functions in a so called ‘R package’ (or
‘R library’). The R package may also contain other R objects, for example data sets or
documentation. There is a lively R user community and many R packages have been
written and made available on CRAN for other users. Just a few examples, there are
packages for portfolio optimization, drawing maps, exporting objects to html, time series
analysis, spatial statistics and the list goes on and on.

13

CHAPTER 1. INTRODUCTION 1.7. R PACKAGES

When you download R, a number of packages are downloaded as well. To use a function
in an R package, that package has to be attached to the system. When you start R not
all of the downloaded packages are attached, only seven packages are attached to the
system by default. You can use the function search to see a list of packages that are
currently attached to the system, this list is also called the search path.

> search()

[1] ".GlobalEnv" "package:stats" "package:graphics"

[4] "package:grDevices" "package:utils" "package:datasets"

[7] "package:methods" "Autoloads" "package:base"

The first element of the output of search is ".GlobalEnv", which is the current workspace
of the user. To attach another package to the system you can use the menu or the li-

brary function. Via the menu: Select the ‘Packages’ menu and select ‘Load package...’,
a list of available packages on your system will be displayed. Select one and click ‘OK’,
the package is now attached to your current R session. Via the library function:

> exists("shoes")

[1] FALSE

> library(MASS)

> exists("shoes")

[1] TRUE

> shoes

$A

[1] 13.2 8.2 10.9 14.3 10.7 6.6 9.5 10.8 8.8 13.3

$B

[1] 14.0 8.8 11.2 14.2 11.8 6.4 9.8 11.3 9.3 13.6

The function library can also be used to list all the available libraries on your system
with a short description. Run the function without any arguments

> library()

If you have a connection to the internet then a package on CRAN can be installed
very easily. To install a new package go to the ‘Packages’ menu and select ‘Install
package(s)...’. Then select a CRAN mirror near you, a (long) list with all the packages
will appear where you can select one or more packages. Click ‘OK’ to install the selected
packages. Note that the packages are only installed on your machine and not loaded
(attached) to your current R session. As an alternative to the function search use
sessionInfo to see system packages and user attached packages.

14

CHAPTER 1. INTRODUCTION 1.8. CONFLICTING OBJECTS

> sessionInfo()

R version 2.12.2 (2011-02-25)

Platform: x86_64-pc-mingw32/x64 (64-bit)

locale:

[1] LC_COLLATE=Italian_Italy.1252 LC_CTYPE=Italian_Italy.1252

[3] LC_MONETARY=Italian_Italy.1252 LC_NUMERIC=C

[5] LC_TIME=Italian_Italy.1252

attached base packages:

[1] stats graphics grDevices utils datasets methods base

other attached packages:

[1] MASS_7.3-11

1.8 Conflicting objects

It is not recommended to do, but R allows the user to give an object a name that already
exists. If you are not sure if a name already exists, just enter the name in the R console
and see if R can find it. R will look for the object in all the libraries (packages) that
are currently attached to the R system. R will not warn you when you use an existing
name.

> sum

function (..., na.rm = FALSE) .Primitive("sum")

> sum = 10

> sum

[1] 10

The object sum already exists in the base package, but is now masked by your object
sum. To get a list of all masked objects use the function conflicts.

> conflicts()

[1] "body<-" "sum"

You can safely remove the object sum with the function rm without risking deletion
of the sum function. Calling rm removes only objects in your working environment by
default.

15

CHAPTER 1. INTRODUCTION 1.9. EDITORS FOR R SCRIPTS, . . .

1.9 Editors for R scripts, notebook graphical user
interfaces

1.9.1 The editor in RGui

The console window (command line interface) in R is only useful when you want to enter
one or two statements. It is not useful when you want to edit or write larger blocks of R
code. In the RGui window you can open a new script, go to the ‘File’ menu and select
‘New Script’. An empty R editor will appear where you can enter R code. This code
can be saved, it will be a normal text file, normally with a .R extension. Existing text
files with R code can be opened in the RGui window.

To run code in an R editor, select the code and use <Ctrl>-R to run the selected code.
You can see that the code is parsed in the console window, any results will be displayed
there.

1.9.2 Other editors

The built-in R editor is not the most fancy editor you can think of. It does not have
much functionality. Since writing R code is just creating text files, you can do that
with any text editor you like. If you have R code in a text file, you can use the source

function to run the code in R. The function reads and executes all the statements in a
text file.

In the console window

source("C:\\Temp\\MyRfile.R")

There are free text editors that can send the R code inside the text editor to an R session.
Some free editors that are worth mentioning are RStudio (http://www.rstudio.org),
Eclipse (www.eclipse.org), Tinn-R (http://www.sciviews.org/Tinn-R) and JGR (speak
‘Jaguar’ http://jgr.markushelbig.org).

RStudio

RStudio is an integrated development environment (IDE) for R. RStudio combines an
intuitive user interface with powerful coding tools to help you get the most out of R. It
is available on all major platforms. Built in functionality includes:

� Support for R and Sweave files with one-click Pdf.

� Code completion.

16

CHAPTER 1. INTRODUCTION 1.9. EDITORS FOR R SCRIPTS, . . .

� Searchable History.

� Code Transformations.

� Pane layout with source, workspace, history, plots, help and more.

� Project management and Version control.

Figure 1.2: R integrated in the RStudio development environment

Eclipse

Eclipse is more than a text editor it is an environment to create, test manage and
maintain (large) pieces of code. Built in functionality includes:

� Managing different text files in a project.

� Version control, recall previously saved versions of your text file.

� Search in multiple files.

The eclipse environment allows user to develop so called perspectives (or plug-ins).
Such a plug-in customizes the Eclipse environment for a certain programming lan-
guage. Stephan Wahlbrink has written an Eclipse plug-in for R, called ‘StatEt’. See
www.walware.de/goto/statet and see [2]. This plug-in adds extra ‘R specific’ function-
ality:

� Start an R console or terminal within Eclipse.

17

CHAPTER 1. INTRODUCTION 1.9. EDITORS FOR R SCRIPTS, . . .

� Color coding of key words.

� Run R code in Eclipse by sending it to the R console.

� Insert predefined blocks of R code (templates).

� Supports writing R documentation files (*.Rd files).

Figure 1.3: R integrated in the Eclipse development environment

Tinn-R

Tinn stands for Tinn is not Notepad, it is a text editor that was originally developed to
replace the boring Notepad. With each new version of Tinn more features were added,
and it has become a very nice environment to edit and maintain code. Tinn-R is the
special R version of Tinn. It allows color highlighting of the R language and sending R
statements to an R Console window.

18

CHAPTER 1. INTRODUCTION 1.10. MENUS AND DIALOG BOXES . . .

Figure 1.4: The Tinn-R and an the R Console environment

JGR

JGR (Java GUI for R) is a universal and unified Graphical User Interface for R. It
includes among others: an integrated editor, help system ‘Type-on’ spreadsheet and an
object browser.

1.10 Menus and dialog boxes graphical user interfaces

This type of GUI is commonly found in current statistical packages like SPSS, JMP,
Minitab, Systat, Statistica, Splus.

19

CHAPTER 1. INTRODUCTION 1.10. MENUS AND DIALOG BOXES . . .

Rcmdr

The R-Commander GUI consists of a window containing several menus, buttons, and
information fields. In addition, the Commander window contains script and output text
windows useful to learn R language from the GUI. Rcmdr is available as a package, it
is possible to get a copy of the latest released version of the Rcmdr package through
CRAN as explained in section 1.7 on page 13.

Deducer

Deducer is designed to be a free easy to use alternative to proprietary data analysis
software such as SPSS, JMP, and Minitab. It has a menu system to do common data
manipulation and analysis tasks, and an excel-like spreadsheet in which to view and
edit data frames. Deducer is designed to be used with the Java based R console JGR,
though it supports a number of other R environments (e.g. Windows RGUI and RTerm).
Deducer is available as a package, it is possible to get a copy of the latest released version
of the Deducer package through CRAN as explained in section 1.7.

20

CHAPTER 1. INTRODUCTION 1.10. MENUS AND DIALOG BOXES . . .

Figure 1.5: The JGR interface

21

CHAPTER 1. INTRODUCTION 1.10. MENUS AND DIALOG BOXES . . .

Figure 1.6: The Rcmdr interface

22

CHAPTER 1. INTRODUCTION 1.10. MENUS AND DIALOG BOXES . . .

Figure 1.7: The Deducer interface

23

2 Data Objects

In this section we will discuss the different aspects of data types and structures in R.
Operators such as c and : will be used in this section as an illustration and will be
discussed in the next section. If you are confronted with an unknown function, you can
ask for help by typing in the command help:

> help(c)

A help text will appear and describe the purpose of the function and how to use it.

2.1 Data types

Technically data types are those returned by typeof and it represents the (R internal)
type or storage mode of any object. Current values are the vector types ‘logical’, ‘integer’,
‘double’, ‘complex’, ‘character’, ‘raw’ and ‘list’, ‘NULL, ‘closure’ (function), ‘special’ and
‘builtin’ (basic functions and operators), ‘environment’, ‘S4’ (some S4 objects) and others
that are unlikely to be seen at user level.

In this section we will adopt a user oriented approach describing basic data types adding
factors, dates, times, missing data, infinite values and data structures (e.g. matrices)

2.1.1 Double

If you do calculations on numbers, you can use the data type double to represent the
numbers. Doubles are numbers like 3.1415, 8.0 and 8.1. Doubles are used to represent
continuous variables like the weight or length of a person.

> x <- 8.14

> y <- 8.0

> z <- 87.0 + 12.9

Use the function is.double to check if an object is of type double. Alternatively, use
the function typeof to ask R the type of the object x. Type numeric is identical to
double (and real).

> typeof(x)

24

CHAPTER 2. DATA OBJECTS 2.1. DATA TYPES

[1] "double"

> is.double(8.9)

[1] TRUE

> test <- 1223.456

> is.double(test)

[1] TRUE

> is.numeric(test)

[1] TRUE

> is.real(test)

[1] TRUE

Keep in mind that doubles are just approximations to real numbers. Mathematically
there are infinity many numbers, the computer can ofcourse only represent a finite num-
ber of numbers. Not only can numbers like π or

√
2 not be represented exactly, less

exotic numbers like 0.1 for example can also not be represented exactly.

One of the conseqeunces of this is that when you compare two doubles with each other
you should take some care. Consider the following (surprising) result.

> 0.3 == 0.1 + 0.1 + 0.1

[1] FALSE

2.1.2 Character

A character object is represented by a collection of characters between double quotes
("). For example: "x", "test character" and "iuiu8ygy-iuhu". One way to create
character objects is as follows.

> x <- c("a","b","c")

> x

[1] "a" "b" "c"

> mychar1 <- "This is a test"

> mychar1

[1] "This is a test"

25

CHAPTER 2. DATA OBJECTS 2.1. DATA TYPES

> mychar2 <- "This is another test"

> mychar2

[1] "This is another test"

> charvector <- c("a", "b", "c", "test")

> charvector

[1] "a" "b" "c" "test"

The double quotes indicate that we are dealing with an object of type ‘character’.

2.1.3 Logical

An object of data type logical can have the value TRUE or FALSE and is used to indicate
if a condition is true or false. Such objects are usually the result of logical expressions.

> x <- 9

> y <- x > 10

> y

[1] FALSE

The result of the function is.double is an object of type logical (TRUE or FALSE).

> is.double(9.876)

[1] TRUE

Logical expressions are often built from logical operators:

< smaller than
<= smaller than or equal to
> larger than
>= larger than or equal to
== is equal to
!= is unequal to

The logical operators and, or and not are given by &, | and !, respectively.

> x <- c(9,166)

> y <- (3 < x) & (x <= 10)

Calculations can also be carried out on logical objects, in which case the FALSE is replaced
by a zero and a one replaces the TRUE. For example, the sum function can be used to
count the number of TRUE’s in a vector or array.

26

CHAPTER 2. DATA OBJECTS 2.1. DATA TYPES

> x <- 1:15

> ## number of elements in x larger than 9

> sum(x>9)

[1] 6

2.1.4 Integer

Integers are natural numbers. They can be used to represent counting variables, for
example the number of children in a household. In R integers are mostly used for
internal representation of a factor, see 2.1.5, because of this it is necessary to explicitly
declare a numer as integer to get the appropriate type but fortunately mixing objects of
type ‘double’ and ‘integer’ is not a problem.

> nchild <- as.integer(3)

> is.integer(nchild)

[1] TRUE

Note that 3.0 is not an integer, nor is 3 by default an integer!

> nchild <- 3.0

> is.integer(nchild)

[1] FALSE

> nchild <- 3

> is.integer(nchild)

[1] FALSE

So a 3 of type ‘integer’ in R is something different than a 3.0 of type ‘double’. How-
ever, you can mix objects of type ‘double’ and ‘integer’ in one calculation without any
problems.

> x <- as.integer(7)

> y <- 2.0

> z <- x/y

> z

[1] 3.5

In contrast to some other programming languages, the answer is of type double and is
3.5. The maximum integer in R is 231 − 1.

> as.integer(2^31 - 1)

27

CHAPTER 2. DATA OBJECTS 2.1. DATA TYPES

[1] 2147483647

> as.integer(2^31)

[1] NA

2.1.5 Factor

The factor data type is used to represent categorical data (i.e. data of which the value
range is a collection of codes). For example:

� variable ‘sex’ with values male and female.

� variable ‘blood type’ with values: A, AB and O.

A factor variable can be useful in various statistical analysis including regression, see
section ??.

An individual code of the value range is also called a level of the factor variable. So the
variable ‘sex’ is a factor variable with two levels, male and female.

Sometimes people confuse factor type with character type. Characters are often used
for labels in graphs, column names or row names. Factors must be used when you want
to represent a discrete variable in a data frame and want to analyze it.

Factor objects can be created from character objects or from numeric objects, using the
function factor. For example, to create a vector of length five of type factor do the
following:

> sex <- c("male","male","female","male","female")

The object sex is a character object. You need to transform it to factor.

> sex <- factor(sex)

> sex

[1] male male female male female

Levels: female male

Use the function levels to see the different levels a factor variable has.

> levels(sex)

[1] "female" "male"

Note that the result of the levels function is of type character. Another way to generate
the sex variable is as follows:

> sex <- c(2,2,1,2,1)

28

CHAPTER 2. DATA OBJECTS 2.1. DATA TYPES

The object ‘sex’ is an integer variable, you need to transform it to a factor.

> sex <- factor(sex)

> sex

[1] 2 2 1 2 1

Levels: 1 2

The object ‘sex’ looks like, but is not an integer variable. The 1 represents level ”1” here.
So arithmetic operations on the sex variable are not possible:

> sex + 7

[1] NA NA NA NA NA

It is better to rename the levels, so level ”1” becomes female and level ”2” becomes
male:

> levels(sex) <- c("female", "male")

> sex

[1] male male female male female

Levels: female male

You can transform factor variables to double or integer variables using the as.double

or as.integer function.

> sex.numeric <- as.double(sex)

> sex.numeric

[1] 2 2 1 2 1

The 1 is assigned to the female level, only because alphabetically female comes first. If
the order of the levels is of importance, you will need to use ordered factors. Use the
function ordered and specify the order with the levels argument. For example:

> Income <- c("High","Low","Average","Low","Average","High","Low")

> Income <- ordered(Income, levels=c("Low","Average","High"))

> Income

[1] High Low Average Low Average High Low

Levels: Low < Average < High

The last line indicates the ordering of the levels within the factor variable. When you
transform an ordered factor variable, the order is used to assign numbers to the levels.

> Income.numeric <- as.double(Income)

> Income.numeric

29

CHAPTER 2. DATA OBJECTS 2.1. DATA TYPES

[1] 3 1 2 1 2 3 1

The order of the levels is also used in linear models. If one or more of the regression
variables are factor variables, the order of the levels is important for the interpretation
of the parameter estimates see section ??.

2.1.6 Dates and Times

To represent a calendar date in R use the function as.Date to create an object of class
Date.

> temp <- c("01-01-2000", "31-03-2000")

> z <- as.Date(temp, "%d-%m-%Y")

> z

[1] "2000-01-01" "2000-03-31"

> data.class(z)

[1] "Date"

> format(z, "%Y-%m-%d")

[1] "2000-01-01" "2000-03-31"

You can add a number to a date object, the number is interpreted as the number of day
to add to the date.

> z + 19

[1] "2000-01-20" "2000-04-19"

You can subtract one date from another, the result is an object of class ‘difftime’

> dz = z[2] -z[1]

> dz

Time difference of 90 days

> data.class(dz)

[1] "difftime"

In R the classes POSIXct and POSIXlt can be used to represent calendar dates and times.
You can create POSIXct objects with the function as.POSIXct. The function accepts
characters as input, and it can be used to not only to specify a date but also a time
within a date.

30

CHAPTER 2. DATA OBJECTS 2.1. DATA TYPES

> t1 <- as.POSIXct("2000-01-01")

> t2 <- as.POSIXct("2000-03-31 15:34")

> t1

[1] "2000-01-01 CET"

> t2

[1] "2000-03-31 15:34:00 CEST"

A handy function is strptime, it is used to convert a certain character representation of a
date (and time) into another character representation. You need to provide a conversion
specification that starts with a % followed by a single letter.

> # first creating four characters

> x <- c("01/01/2000", "01/02/2000", "03/31/2000", "07/30/2000")

> z <- strptime(x, "%m/%d/%Y")

> zt <- as.POSIXct(z)

> zt

[1] "2000-01-01 CET" "2000-01-02 CET" "2000-03-31 CEST" "2000-07-30 CEST"

> # pasting 4 character dates and 4 character times together

> dates <- c("01/01/2000", "01/02/2000", "03/31/2000", "07/30/2000")

> times <- c("23:03:20", "22:29:56", "01:03:30", "18:21:03")

> x <- paste(dates, times)

> z <- strptime(x, "%m/%d/%Y %H:%M:%S")

> zt <- as.POSIXct(z, tz = "GMT")

> zt

[1] "2000-01-01 23:03:20 GMT" "2000-01-02 22:29:56 GMT"

[3] "2000-03-31 01:03:30 GMT" "2000-07-30 18:21:03 GMT"

An object of type POSIXct can be used in certain calculations, a number can be added
to a POSIXct object. This number will be the interpreted as the number of seconds to
add to the POSIXct object.

> zt + 13

[1] "2000-01-01 23:03:33 GMT" "2000-01-02 22:30:09 GMT"

[3] "2000-03-31 01:03:43 GMT" "2000-07-30 18:21:16 GMT"

You can subtract two POSIXct objects, the result is a so called ‘difftime’ object.

> t2 <- as.POSIXct("2000-01-01 23:03:20")

> t1 <- as.POSIXct("2000-03-31 01:03:30")

> d <- t2-t1

> d

31

CHAPTER 2. DATA OBJECTS 2.1. DATA TYPES

Time difference of -89.04178 days

A ‘difftime’ object can also be created using the function as.difftime, and you can add
a difftime object to a POSIXct object. Due to a bug in R this can only safely be done
with the function "+.POSIXt".

> "+.POSIXt"(zt, d)

[1] "1999-10-04 22:03:10 GMT" "1999-10-05 21:29:46 GMT"

[3] "2000-01-02 00:03:20 GMT" "2000-05-02 17:20:53 GMT"

To extract the weekday, month or quarter from a POSIXct object use the handy R
functions weekdays, months and quarters. Another handy function is Sys.time, which
returns the current date and time.

> weekdays(zt)

[1] "sabato" "domenica" "venerdı̀" "domenica"

There are some R packages that can handle dates and time objects. For example, the
packages zoo, chron, tseries, its, xts and Rmetrics. Especially Rmetrics has a set of
powerful functions to maintain and manipulate dates and times. See [3].

2.1.7 Complex

Objects of type ‘complex’ are used to represent complex numbers. In statistical data
analysis you will not need them often. Use the function as.complex or complex to
create objects of type complex.

> test1 <- as.complex(-1)

> test1

[1] -1+0i

> sqrt(test1)

[1] 0+1i

> typeof(test1)

[1] "complex"

Note that by default calculations are done on real numbers, so sqrt(-1) results in NA.

32

CHAPTER 2. DATA OBJECTS 2.2. DATA STRUCTURES

2.1.8 Missing data and Infinite values

We have already seen the symbol NA. In R it is used to represent ‘missing’ data (Not
Available). It is not really a separate data type, it could be a missing double or a
missing integer. To check if data is missing, use the function is.na or use a direct
comparison with the symbol NA. There is also the symbol NaN (Not a Number), which
can be detected with the function is.nan.

> x <- as.double(c("1", "2", "qaz"))

> is.na(x)

[1] FALSE FALSE TRUE

> z <- sqrt(c(1,-1))

> is.nan(z)

[1] FALSE TRUE

Infinite values are represented by Inf or -Inf. You can check if a value is infinite with
the function is.infinite. Use is.finite to check if a value is finite.

> x <- c(1,3,4)

> y <- c(1,0,4)

> x/y

[1] 1 Inf 1

> z <- log(c(4,0,8))

> is.infinite(z)

[1] FALSE TRUE FALSE

In R NULL represents the null object. NULL is used mainly to represent the lists with zero
length, and is often returned by expressions and functions whose value is undefined.

2.2 Data structures

Before you can perform statistical analysis in R, your data has to be structured in some
coherent way. To store your data R has the following structures:

� vector

� matrix

� array

� data frame

33

CHAPTER 2. DATA OBJECTS 2.2. DATA STRUCTURES

� time-series

� list

2.2.1 Vectors

The simplest structure in R is the vector. A vector is an object that consists of a
number of elements of the same type, all doubles or all logical. A vector with the name
‘x’ consisting of four elements of type ‘double’ (10, 5, 3, 6) can be constructed using the
function c.

> x <- c(10, 5, 3, 6)

> x

[1] 10 5 3 6

The function c merges an arbitrary number of vectors to one vector. A single number
is regarded as a vector of length one.

> y <- c(x,0.55, x, x)

> y

[1] 10.00 5.00 3.00 6.00 0.55 10.00 5.00 3.00 6.00 10.00 5.00 3.00

[13] 6.00

Typing the name of an object in the commands window results in printing the object.
The numbers between square brackets indicate the position of the following element in
the vector.

Use the function round to round the numbers in a vector.

> round (y,3) # round to 3 decimals

[1] 10.00 5.00 3.00 6.00 0.55 10.00 5.00 3.00 6.00 10.00 5.00 3.00

[13] 6.00

Mathematical calculations on vectors

Calculations on (numerical) vectors are usually performed on each element. For example,
x*x results in a vector which contains the squared elements of x.

> x

[1] 10 5 3 6

34

CHAPTER 2. DATA OBJECTS 2.2. DATA STRUCTURES

> z <- x*x

> z

[1] 100 25 9 36

The symbols for elementary arithmetic operations are +, -, *, /. Use the ^ symbol to
raise power. Most of the standard mathematical functions are available in R. These
functions also work on each element of a vector. For example the logarithm of x:

> log(x)

[1] 2.302585 1.609438 1.098612 1.791759

Function name Operation
abs absolute value
asin acos atan inverse geometric functions
asinh acosh atanh inverse hyperbolic functions
exp log exponent and natural logarithm
floor ceiling trunc creates integers from floating point numbers
gamma lgamma gamma and log gamma function
log10 logarithm with basis 10
round rounding
sin cos tan geometric functions
sinh cosh tanh hyperbolic functions
sqrt square root

Table 2.1: Some mathematical functions that can be applied on vectors

The recycling rule

It is not necessary to have vectors of the same length in an expression. If two vectors
in an expression are not of the same length then the shorter one will be repeated until
it has the same length as the longer one. A simple example is a vector and a number
(which is a vector of length one).

> sqrt(x) + 2

[1] 5.162278 4.236068 3.732051 4.449490

In the above example the 2 is repeated 4 times until it has the same length as x and then
the addition of the two vectors is carried out. In the next example, x has to be repeated
1.5 times in order to have the same length as y. This means the first two elements of x
are added to x and then x*y is calculated.

35

CHAPTER 2. DATA OBJECTS 2.2. DATA STRUCTURES

> x <- c(1,2,3,4)

> y <- c(1,2,3,4,5,6)

> z <- x*y

> z

[1] 1 4 9 16 5 12

Generating vectors

Regular sequences of numbers can be very handy for all sorts of reasons. Such sequences
can be generated in different ways. The easiest way is to use the column operator (:).

> index <- 1:20

> index

[1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

A descending sequence is obtained by 20:1. The function seq together with its arguments
from, to, by or length is used to generate more general sequences. Specify the beginning
and end of the sequence and either specify the length of the sequence or the increment.

> u <- seq(from=-3,to=3,by =0.5)

> u

[1] -3.0 -2.5 -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0

The following commands have the same result:

> u <- seq(-3,3,length=13)

> u

[1] -3.0 -2.5 -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0

> u <- (-6):6/2

> u

[1] -3.0 -2.5 -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0

The function seq can also be used to generate vectors with POSIXct elements (a sequence
of dates). The following examples speak for them selves.

> seq(as.POSIXct("2000-01-01"), by = "month", length = 6)

[1] "2000-01-01 CET" "2000-02-01 CET" "2000-03-01 CET" "2000-04-01 CEST"

[5] "2000-05-01 CEST" "2000-06-01 CEST"

> seq(ISOdate(2000,1,1), ISOdate(2005,6,1), "years")

36

CHAPTER 2. DATA OBJECTS 2.2. DATA STRUCTURES

[1] "2000-01-01 12:00:00 GMT" "2001-01-01 12:00:00 GMT"

[3] "2002-01-01 12:00:00 GMT" "2003-01-01 12:00:00 GMT"

[5] "2004-01-01 12:00:00 GMT" "2005-01-01 12:00:00 GMT"

The function rep repeats a given vector. The first argument is the vector and the second
argument can be a number that indicates how often the vector needs to be repeated.

> rep(1:4, 4)

[1] 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

> rep(1:4, each = 4)

[1] 1 1 1 1 2 2 2 2 3 3 3 3 4 4 4 4

The second argument can also be a vector of the same length as the vector used for the
first argument. In this case each element in the second vector indicates how often the
corresponding element in the first vector is repeated.

> rep(1:4, c(2,2,2,2))

[1] 1 1 2 2 3 3 4 4

> rep(1:4, 1:4)

[1] 1 2 2 3 3 3 4 4 4 4

For information about other options of the function rep type help(rep). To generate
vectors with random elements you can use the functions rnorm or runif. There are
more of these functions.

> x <- rnorm(10) # 10 random standard normal numbers

> y <- runif(10,4,7) # 10 random numbers between 4 and 7

2.2.2 Matrices

Generating matrices

A matrix can be regarded as a generalization of a vector. As with vectors, all the
elements of a matrix must be of the same data type. A matrix can be generated in
several ways. For example:

� Use the function matrix:

> x <- matrix(1:8,2,4,byrow=F)

> x

37

CHAPTER 2. DATA OBJECTS 2.2. DATA STRUCTURES

[,1] [,2] [,3] [,4]

[1,] 1 3 5 7

[2,] 2 4 6 8

By default the matrix is filled by column. To fill the matrix by row specify byrow = T

as argument in the matrix function.

� Use the function dim:

> x <- 1:8

> x

[1] 1 2 3 4 5 6 7 8

> dim(x) <- c(2,4)

> x

[,1] [,2] [,3] [,4]

[1,] 1 3 5 7

[2,] 2 4 6 8

1. Use the function cbind to create a matrix by binding two or more vectors as
column vectors. The function rbind is used to create a matrix by binding two or
more vectors as row vectors.

> cbind(c(1,2,3),c(4,5,6))

[,1] [,2]

[1,] 1 4

[2,] 2 5

[3,] 3 6

> rbind(c(1,2,3),c(4,5,6))

[,1] [,2] [,3]

[1,] 1 2 3

[2,] 4 5 6

Calculations on matrices

A matrix can be regarded as a number of equal length vectors pasted together. All the
mathematical functions that apply to vectors also apply to matrices and are applied on
each matrix element.

> x*x^2 # All operations are applied on each matrix element

38

CHAPTER 2. DATA OBJECTS 2.2. DATA STRUCTURES

[,1] [,2] [,3] [,4]

[1,] 1 27 125 343

[2,] 8 64 216 512

> max(x) # returns the maximum of all matrix elements in x

[1] 8

You can multiply a matrix with a vector. The outcome may be surprising:

> x <- matrix(1:16,ncol=4)

> y <- 7:10

> x*y

[,1] [,2] [,3] [,4]

[1,] 7 35 63 91

[2,] 16 48 80 112

[3,] 27 63 99 135

[4,] 40 80 120 160

> x <- matrix(1:28,ncol=4)

> y <- 7:10

> x*y

[,1] [,2] [,3] [,4]

[1,] 7 80 135 176

[2,] 16 63 160 207

[3,] 27 80 119 240

[4,] 40 99 144 175

[5,] 35 120 171 208

[6,] 48 91 200 243

[7,] 63 112 147 280

As an exercise: try to find out what R did.

To perform a matrix multiplication in the mathematical sense, use the operator: %*%.
The dimensions of the two matrices must agree. In the following example the dimensions
are wrong:

> x <- matrix(1:8,ncol=2)

> print(try(x %*% x))

[1] "Error in x %*% x : gli argomenti non sono compatibili\n"

attr(,"class")

[1] "try-error"

A matrix multiplied with its transposed t(x) always works.

39

CHAPTER 2. DATA OBJECTS 2.2. DATA STRUCTURES

> x %*% t(x)

[,1] [,2] [,3] [,4]

[1,] 26 32 38 44

[2,] 32 40 48 56

[3,] 38 48 58 68

[4,] 44 56 68 80

R has a number of matrix specific operations, for example:

Function name Operation
chol(x) Choleski decomposition
col(x) matrix with column numbers of the elements
diag(x) create a diagonal matrix from a vector
ncol(x) returns the number of columns of a matrix
nrow(x) returns the number of rows of a matrix
qr(x) QR matrix decomposition
row(x) matrix with row numbers of the elements
solve(A,b) solve the system Ax=b
solve(x) calculate the inverse
svd(x) singular value decomposition
var(x) covariance matrix of the columns

Table 2.2: Some functions that can be applied on matrices

A detailed description of these functions can be found in the corresponding help files,
which can be accessed by typing for example ?diag in the R Console.

2.2.3 Arrays

Arrays are generalizations of vectors and matrices. A vector is a one-dimensional array
and a matrix is a two dimensional array. As with vectors and matrices, all the elements
of an array must be of the same data type. An example of an array is the three-
dimensional array ‘iris3’, which is a built-in data object in R. A three dimensional array
can be regarded as a block of numbers.

> dim(iris3) # dimensions of iris

[1] 50 4 3

All basic arithmetic operations which apply to matrices are also applicable to arrays and
are performed on each element.

> test <- iris + 2*iris

40

CHAPTER 2. DATA OBJECTS 2.2. DATA STRUCTURES

The function array is used to create an array object

> newarray <- array(c(1:8, 21:28, 331:338), dim = c(2,4,3))

> newarray

, , 1

[,1] [,2] [,3] [,4]

[1,] 1 3 5 7

[2,] 2 4 6 8

, , 2

[,1] [,2] [,3] [,4]

[1,] 21 23 25 27

[2,] 22 24 26 28

, , 3

[,1] [,2] [,3] [,4]

[1,] 331 333 335 337

[2,] 332 334 336 338

2.2.4 Data frames

Data frames can also be regarded as an extension to matrices. Data frames can have
columns of different data types and are the most convenient data structure for data
analysis in R. In fact, most statistical modeling routines in R require a data frame as
input.

One of the built-in data frames in R is ‘mtcars’.

> head(mtcars) # only the first rows of a data.frame

mpg cyl disp hp drat wt qsec vs am gear carb

Mazda RX4 21.0 6 160 110 3.90 2.620 16.46 0 1 4 4

Mazda RX4 Wag 21.0 6 160 110 3.90 2.875 17.02 0 1 4 4

Datsun 710 22.8 4 108 93 3.85 2.320 18.61 1 1 4 1

Hornet 4 Drive 21.4 6 258 110 3.08 3.215 19.44 1 0 3 1

Hornet Sportabout 18.7 8 360 175 3.15 3.440 17.02 0 0 3 2

Valiant 18.1 6 225 105 2.76 3.460 20.22 1 0 3 1

41

CHAPTER 2. DATA OBJECTS 2.2. DATA STRUCTURES

The data frame contains information on different cars. Usually each row corresponds
with a case and each column represents a variable. In this example the ‘carb’ column
is of data type ‘double’ and represents the number of carburetors. See the help file for
more information on this data frame; ?mtcars.

Data frame attributes

A data frame can have the attributes names and row.names. The attribute names
contains the column names of the data frame and the attribute row.names contains the
row names of the data frame. The attributes of a data frame can be retrieved separately
from the data frame with the functions names and row.names. The result is a character
vector containing the names.

> rownames(mtcars)[1:5] # only the first five row names

[1] "Mazda RX4" "Mazda RX4 Wag" "Datsun 710"

[4] "Hornet 4 Drive" "Hornet Sportabout"

> names(mtcars)

[1] "mpg" "cyl" "disp" "hp" "drat" "wt" "qsec" "vs" "am" "gear"

[11] "carb"

> colnames(mtcars)

[1] "mpg" "cyl" "disp" "hp" "drat" "wt" "qsec" "vs" "am" "gear"

[11] "carb"

Creating data frames

You can create data frames in several ways, by importing a data file as in Chapter 3,
for example, or by using the function data.frame. This function can be used to create
new data frames or convert other objects into data frames.

A few examples of the data.frame function:

> my.logical <- sample(c(T,F),size=5,replace = T)

> my.numeric <- rnorm(5)

> my.df <- data.frame(my.logical,my.numeric)

> my.df

42

CHAPTER 2. DATA OBJECTS 2.2. DATA STRUCTURES

my.logical my.numeric

1 TRUE -1.08569914

2 TRUE -0.08542326

3 TRUE 1.07061054

4 TRUE -0.14539355

5 TRUE -1.16554485

> my.df <- data.frame(Logical = my.logical, Numeric = my.numeric)

> my.df

Logical Numeric

1 TRUE -1.08569914

2 TRUE -0.08542326

3 TRUE 1.07061054

4 TRUE -0.14539355

5 TRUE -1.16554485

> test <- matrix(runif(15, 0, 100),5,3) # create a matrix with random elements

> test <- data.frame(test)

> test

X1 X2 X3

1 20.65314 66.511519 44.85163

2 12.75317 9.484066 81.00644

3 75.33079 38.396964 81.23895

4 89.50454 27.438364 79.43423

5 37.44628 81.464004 43.98317

> names(test)

[1] "X1" "X2" "X3"

R automatically creates column names: ‘X1’, ‘X2’ and ‘X3’. You can use the names

function to change these column names.

> names(test) <- c("Price", "Length", "Income")

> row.names(test) <- c("Paul","Ian","Richard","David","Rob")

> test

Price Length Income

Paul 20.65314 66.511519 44.85163

Ian 12.75317 9.484066 81.00644

Richard 75.33079 38.396964 81.23895

David 89.50454 27.438364 79.43423

Rob 37.44628 81.464004 43.98317

43

CHAPTER 2. DATA OBJECTS 2.2. DATA STRUCTURES

2.2.5 Time-series objects

In R a time-series object (an object of class ‘ts’) is created with the function ts. It
combines two components:

� The data, a vector or matrix of numeric values. In case of a matrix, each column
is a separate time-series.

� The dates of the data, the dates are equispaced points in time.

> # starting from jan-2000, 12 monthly intervals

> myts1 <- ts(data = rnorm(12), start=c(2000), freq = 12)

> # two time-series starting from mar-2000, 3 monthly intervals

> myts2 <- ts(data = matrix(rnorm(6),ncol=2), start=c(2000,3), freq=12)

> myts2

Series 1 Series 2

Mar 2000 -0.46665535 0.25331851

Apr 2000 0.77996512 -0.02854676

May 2000 -0.08336907 -0.04287046

The function tsp returns the start and end time, and also the frequency without printing
the complete data of the time-series.

> tsp(myts2)

[1] 2000.167 2000.333 12.000

2.2.6 Lists

A list is like a vector. However, an element of a list can be an object of any type and
structure. Consequently, a list can contain another list and therefore it can be used to
construct arbitrary data structures. Lists are often used for output of statistical routines
in R. The output object is often a collection of parameter estimates, residuals, predicted
values etc.

For example, consider the output of the function lsfit. In its most simple form the
function fits a least square regression.

> x <- 1:5

> y <- x + rnorm(5,0,0.25)

> z <- lsfit(x,y)

> z

44

CHAPTER 2. DATA OBJECTS 2.2. DATA STRUCTURES

$coefficients

Intercept X

0.3015801 0.9277260

$residuals

[1] 0.1128445 -0.2134749 0.2943595 -0.3996724 0.2059432

$intercept

[1] TRUE

$qr

$qt

[1] -6.89772890 2.93372729 0.21618290 -0.54791914 -0.01237369

$qr

Intercept X

[1,] -2.2360680 -6.7082039

[2,] 0.4472136 3.1622777

[3,] 0.4472136 -0.1954395

[4,] 0.4472136 -0.5116673

[5,] 0.4472136 -0.8278950

$qraux

[1] 1.447214 1.120788

$rank

[1] 2

$pivot

[1] 1 2

$tol

[1] 1e-07

attr(,"class")

[1] "qr"

In this example the output value of lsfit(x,y) is assigned to object ‘z’. This is a
list whose first component is a vector with the intercept and the slope. The second
component is a vector with the model residuals and the third component is a logical
vector of length one indicating whether or not an intercept is used. The three components
have the names ‘coef’, ‘residuals’ and ‘intercept’.

The components of a list can be extracted in several ways:

45

CHAPTER 2. DATA OBJECTS 2.2. DATA STRUCTURES

� component number: z[[1]] means the first component of z (use double square
brackets!).

� component name: z$name indicates the component of z with name name.

To identify the component name the first few characters will do, for example, you can
use z$r instead of z$residuals.

> test <- z$r

> test

[1] 0.1128445 -0.2134749 0.2943595 -0.3996724 0.2059432

> z$r[4] # fourth element of the residuals

[1] -0.3996724

Creating lists

A list can also be constructed by using the function list. The names of the list com-
ponents and the contents of list components can be specified as arguments of the list

function by using the = character.

> x1 <- 1:5

> x2 <- c(T,T,F,F,T)

> y <- list(numbers=x1, wrong=x2)

> y

$numbers

[1] 1 2 3 4 5

$wrong

[1] TRUE TRUE FALSE FALSE TRUE

So the left-hand side of the = operator in the list function is the name of the component
and the right-hand side is an R object. The order of the arguments in the list function
determines the order in the list that is created. In the above example the logical object
‘wrong’ is the second component of y.

> y[[2]]

[1] TRUE TRUE FALSE FALSE TRUE

The function names can be used to extract the names of the list components. It is also
used to change the names of list components.

> names(y)

46

CHAPTER 2. DATA OBJECTS 2.2. DATA STRUCTURES

[1] "numbers" "wrong"

> names(y) <- c("lots", "valid")

> names(y)

[1] "lots" "valid"

To add extra components to a list proceed as follows:

> y[[3]] <- 1:10

> y$test <- "hello"

> y

$lots

[1] 1 2 3 4 5

$valid

[1] TRUE TRUE FALSE FALSE TRUE

[[3]]

[1] 1 2 3 4 5 6 7 8 9 10

$test

[1] "hello"

Note the difference in single square brackets and double square brackets.

> y[1]

$lots

[1] 1 2 3 4 5

> y[[1]]

[1] 1 2 3 4 5

When single square brackets are used, the component is returned as list, whereas double
square brackets return the component itself.

47

CHAPTER 2. DATA OBJECTS 2.2. DATA STRUCTURES

Transforming objects to a list

Many objects can be transformed to a list with the function as.list. For example,
vectors, matrices and data frames.

> as.list(1:3)

[[1]]

[1] 1

[[2]]

[1] 2

[[3]]

[1] 3

2.2.7 The str function

A handy function is the str function, it displays the internal structure of an R object.
The function can be used to see a short summary of an object.

> x1 <- rnorm(100)

> x2 <- matrix(rnorm(800),ncol=80)

> myl1 <- list(x1,x2,my.df)

> str(x1)

num [1:100] 0.124 0.216 0.38 -0.502 -0.333 ...

> str(x2)

num [1:10, 1:80] 0.977 -0.375 1.053 -1.049 -1.26 ...

> str(my.df)

'data.frame': 5 obs. of 2 variables:

$ Logical: logi TRUE TRUE TRUE TRUE TRUE

$ Numeric: num -1.0857 -0.0854 1.0706 -0.1454 -1.1655

> str(myl1)

List of 3

$: num [1:100] 0.124 0.216 0.38 -0.502 -0.333 ...

$: num [1:10, 1:80] 0.977 -0.375 1.053 -1.049 -1.26 ...

$:'data.frame': 5 obs. of 2 variables:

..$ Logical: logi [1:5] TRUE TRUE TRUE TRUE TRUE

..$ Numeric: num [1:5] -1.0857 -0.0854 1.0706 -0.1454 -1.1655

48

3 Importing data

One of the first things you want to do in a statistical data analysis system is to import
data. R provides a few methods to import data, we will discuss them in this chapter.

3.1 Text files

In R you can import text files with the function read.table. This function is a has many
arguments. Arguments to specify the header, the column separator, the number of lines
to skip, the data types of the columns, etc. The functions read.csv and read.delim are
functions to read ‘comma separated values’ files and tab delimited files. These functions
call read.table with specific arguments.

Suppose we have a text file data.txt, that contains the following text:

Author: John Davis

Date: 18-05-2007

Some comments..

Col1, Col2, Col3, Col4

23, 45, A, John

34, 41, B, Jimmy

12, 99, B, Patrick

The data without the first few lines of text can be imported to an R data frame using
the following R syntax:

> myfile <- "C:\\PROJECTS\\RIntroductoryCourse\\Data.txt"

> mydf <- read.table(myfile, skip=3, sep=",", header=TRUE)

> mydf

Col1 Col2 Col3 Col4

1 23 45 A John

2 34 41 B Jimmy

3 12 99 B Patrick

By default R converts character data in text files to factor type. In the above example
the third and fourth columns are of type factor. To leave character data as character
data type in R, use the stringsAsFactors argument.

49

CHAPTER 3. IMPORTING DATA 3.1. TEXT FILES

> mydf <- read.table(

+ myfile,

+ skip=3,

+ sep=",",

+ header=TRUE,

+ stringsAsFactors=FALSE)

To specify that certain columns are character and other columns are not you must use
the colClasses argument and provide the type for each column.

> mydf <- read.table(

+ myfile, skip=3, sep=",",

+ header=TRUE, stringsAsFactors=FALSE,

+ colClasses = c("numeric", "numeric", "factor", "character"))

There is an advantage in using colClasses, especially when the data set is large. If
you don’t use colClasses then during a data import, R will store the data as character
vectors before deciding what to do with them.

Character strings in a text files may be quoted and may contain the the separator symbol.
To import such text files use the quote argument. Suppose we have the following comma
separated text file that we want to read.

Col1, Col2, Col3

12, 45, 'Davis, Joe'

23, 78, 'White, Jimmy'

Use the read.csv function as follows to import the above text.

> myfile <- "C:\\PROJECTS\\RIntroductoryCourse\\Data.csv"

> read.csv(myfile, quote="'")

Col1 Col2 Col3

1 12 45 Davis, Joe

2 23 78 White, Jimmy

3.1.1 The scan function

The read.table function uses the more low level function scan. This function may also
be called directly by the user, and can sometimes be handy when read.table cannot do
the job. It reads the data into a vector or list, the user can then manipulate this vector
or list. For example, if we use scan to read the text file above we get:

> scan(myfile, what="character", sep=",", strip.white =TRUE)

50

CHAPTER 3. IMPORTING DATA 3.2. EXCEL FILES

[1] "Col1" "Col2" "Col3" "12" "45"

[6] "Davis, Joe" "23" "78" "White, Jimmy"

3.2 Excel files

To get data from Excel just select cells on a Worksheet, copy (to the clipboard) and
then in R use the function read.table with arguments file and sep as follow:

read.table("clipboard", sep = "\t")

To read and write Excel files you can use the package gdata. This package provides the
function read.xls. If the data is in the first sheet and starts at row 1, where the first
row represent the column headers, then the call to read.xls is simple.

3.3 The Foreign package

When you download R, a number of packages are downloaded as well, among these
foreign package reads data stored by Minitab, S, SAS, SPSS, Stata, Systat, dBaseTo
and more. Browse foreign help for details.

51

4 Data Manipulation

The programming language in R provides many different functions and mechanisms
to manipulate and extract data. Let’s look at some of those for the different data
structures.

4.1 Vector subscripts

A part of a vector x can be selected by a general subscripting mechanism.

x[subscript]

The simplest example is to select one particular element of a vector, for example the
first one or the last one.

> x <- c(6,7,2,4)

> x[1]

[1] 6

> x[length(x)]

[1] 4

Moreover, the subscript can have one of the following forms:

A vector of positive natural numbers The elements of the resulting vector are deter-
mined by the numbers in the subscript. To extract the first three numbers:

> x

[1] 6 7 2 4

> x[1:3]

[1] 6 7 2

To get a vector with the fourth, first and again fourth element of x:

52

CHAPTER 4. DATA MANIPULATION 4.2. MATRIX SUBSCRIPTS

> x[c(4,1,4)]

[1] 4 6 4

One or more elements of a vector can be changed by the subscripting mechanism. To
change the third element of a vector proceed as follows:

> x[3] <- 4

A logical vector The result is a vector with only those elements of x of which the
logical vector has an element TRUE.

> x <- c(10,4,6,7,8)

> y <- x >9

> y

[1] TRUE FALSE FALSE FALSE FALSE

> x[y]

[1] 10

or directly

> x[x>9]

[1] 10

4.2 Matrix subscripts

As with vectors, parts of matrices can be selected by the subscript mechanism. The
general scheme for a matrix x is given by:

x[subscript]

Where subscript has one of the following four forms:

1. A pair (rows, cols) where rows is a vector representing the row numbers and cols

is a vector representing column numbers. Rows and/or cols can be empty or negative.
The following examples will illustrate the different possibilities.

> x <- matrix(1:36, ncol=6)

> ## the element in row 2 and column 6 of x

> x[2,6]

53

CHAPTER 4. DATA MANIPULATION 4.2. MATRIX SUBSCRIPTS

[1] 32

> ## the third row of x

> x[3,]

[1] 3 9 15 21 27 33

> ## the element in row 3 and column 1 and

> ## the element in row 3 and column 5

> x[3,c(1,5)]

[1] 3 27

> ## show x, except for the first column

> x[,-1]

[,1] [,2] [,3] [,4] [,5]

[1,] 7 13 19 25 31

[2,] 8 14 20 26 32

[3,] 9 15 21 27 33

[4,] 10 16 22 28 34

[5,] 11 17 23 29 35

[6,] 12 18 24 30 36

A negative pair results in a so-called minor matrix where a column and row is omitted.

> x[-3,-4]

[,1] [,2] [,3] [,4] [,5]

[1,] 1 7 13 25 31

[2,] 2 8 14 26 32

[3,] 4 10 16 28 34

[4,] 5 11 17 29 35

[5,] 6 12 18 30 36

The matrix x remains the same, unless you assign the result back to x.

> x <- x[-3,4]

As with vectors, matrix elements or parts of matrices can be changed by using the matrix
subscript mechanism and the assignment operator together. To change one element:

> x <- matrix(1:36, ncol=6)

> x[4,5] <- 5

To change a complete column:

> x <- matrix(rnorm(100),ncol=10)

> x[,1] <- 1:10

54

CHAPTER 4. DATA MANIPULATION 4.3. MANIPULATING DATA FRAMES

4.3 Manipulating Data frames

4.3.1 Extracting data from data frames

A data frame can be considered as a generalized matrix, consequently all subscripting
methods that work on matrices also work on data frames. However, data frames offer a
few extra possibilities.

> names(mtcars)

[1] "mpg" "cyl" "disp" "hp" "drat" "wt" "qsec" "vs" "am" "gear"

[11] "carb"

To select a specific column from a data frame use the $ symbol or double square brackets
and quotes:

> mpg <- cars$mpg

> mpg <- cars[["mpg"]]

The object mpg is a vector. If you want the result to be a data frame use single square
brackets:

> mpg2 <- mtcars["mpg"]

When using single brackets it is possible to select more than one column from a data
frame. The result is again a data frame:

> test <- mtcars[c("mpg","cyl")]

To select a specific row by name of the data frame ‘mtcars’ use the following R code:

> mtcars["Volvo 142E",]

mpg cyl disp hp drat wt qsec vs am gear carb

Volvo 142E 21.4 4 121 109 4.11 2.78 18.6 1 1 4 2

The result is a data frame with one row. To select more rows use a vector of names:

> mtcars[c("Volvo 142E", "Fiat X1-9"),]

mpg cyl disp hp drat wt qsec vs am gear carb

Volvo 142E 21.4 4 121 109 4.11 2.780 18.6 1 1 4 2

Fiat X1-9 27.3 4 79 66 4.08 1.935 18.9 1 1 4 1

If the given row name does not exist, R will return a row with NA’s.

> mtcars["Lada",]

55

CHAPTER 4. DATA MANIPULATION 4.3. MANIPULATING DATA FRAMES

mpg cyl disp hp drat wt qsec vs am gear carb

NA NA NA NA NA NA NA NA NA NA NA NA

Rows from a data frame can also be selected using row numbers. Select cases 10 trough
14 from the cars data frame.

> mtcars[10:14,]

mpg cyl disp hp drat wt qsec vs am gear carb

Merc 280 19.2 6 167.6 123 3.92 3.44 18.3 1 0 4 4

Merc 280C 17.8 6 167.6 123 3.92 3.44 18.9 1 0 4 4

Merc 450SE 16.4 8 275.8 180 3.07 4.07 17.4 0 0 3 3

Merc 450SL 17.3 8 275.8 180 3.07 3.73 17.6 0 0 3 3

Merc 450SLC 15.2 8 275.8 180 3.07 3.78 18.0 0 0 3 3

The first few rows or the last few rows can be extracted by using the functions head or
tail.

> head(mtcars,3)

mpg cyl disp hp drat wt qsec vs am gear carb

Mazda RX4 21.0 6 160 110 3.90 2.620 16.46 0 1 4 4

Mazda RX4 Wag 21.0 6 160 110 3.90 2.875 17.02 0 1 4 4

Datsun 710 22.8 4 108 93 3.85 2.320 18.61 1 1 4 1

> tail(mtcars,2)

mpg cyl disp hp drat wt qsec vs am gear carb

Maserati Bora 15.0 8 301 335 3.54 3.57 14.6 0 1 5 8

Volvo 142E 21.4 4 121 109 4.11 2.78 18.6 1 1 4 2

To subset specific cases from a data frame you can also use a logical vector. When you
provide a logical vector in a data frame subscript, only the cases which correspond with
a TRUE are selected. Suppose you want to get all cars from the cars data frame that have
a weight of over 3500. First create a logical vector tmp:

> tmp <- mtcars$cyl > 6

Use this vector to subset:

> mtcars[tmp,]

mpg cyl disp hp drat wt qsec vs am gear carb

Hornet Sportabout 18.7 8 360.0 175 3.15 3.440 17.02 0 0 3 2

Duster 360 14.3 8 360.0 245 3.21 3.570 15.84 0 0 3 4

Merc 450SE 16.4 8 275.8 180 3.07 4.070 17.40 0 0 3 3

Merc 450SL 17.3 8 275.8 180 3.07 3.730 17.60 0 0 3 3

Merc 450SLC 15.2 8 275.8 180 3.07 3.780 18.00 0 0 3 3

56

CHAPTER 4. DATA MANIPULATION 4.3. MANIPULATING DATA FRAMES

Cadillac Fleetwood 10.4 8 472.0 205 2.93 5.250 17.98 0 0 3 4

Lincoln Continental 10.4 8 460.0 215 3.00 5.424 17.82 0 0 3 4

Chrysler Imperial 14.7 8 440.0 230 3.23 5.345 17.42 0 0 3 4

Dodge Challenger 15.5 8 318.0 150 2.76 3.520 16.87 0 0 3 2

AMC Javelin 15.2 8 304.0 150 3.15 3.435 17.30 0 0 3 2

Camaro Z28 13.3 8 350.0 245 3.73 3.840 15.41 0 0 3 4

Pontiac Firebird 19.2 8 400.0 175 3.08 3.845 17.05 0 0 3 2

Ford Pantera L 15.8 8 351.0 264 4.22 3.170 14.50 0 1 5 4

Maserati Bora 15.0 8 301.0 335 3.54 3.570 14.60 0 1 5 8

A handy alternative is the function subset. It returns a the subset as a data frame.
The first argument is the data frame. The second argument is a logical expression. In
this expression you use the variable names without proceeding them with the name of
the data frame, as in the above example.

> subset(mtcars, cyl > 6 & hp > 250)

mpg cyl disp hp drat wt qsec vs am gear carb

Ford Pantera L 15.8 8 351 264 4.22 3.17 14.5 0 1 5 4

Maserati Bora 15.0 8 301 335 3.54 3.57 14.6 0 1 5 8

57

5 Statistics

The base installation of R contains many functions for calculating statistical summaries,
data analysis and statistical modeling. Even more functions are available in all the R
packages on CRAN. In this section we will discuss only some of these functions. For a
more comprehensive overview of the statistical possibilities see for example [4] and [5].

5.1 Basic statistical functions

5.1.1 Statistical summaries and tests

A number of functions return statistical summaries and tests. The following table con-
tains a list of only some of the statistical functions in R. The names of the functions
usually speak for themselves.

Function purpose
acf(x, plot=F) auto or partial correlation coefficients
chisq.test(x) chi squared goodness of fit test
cor(x,y) correlation coefficient
ks.test(z) Kolmogorov-Smirnov goodness of fit test
mad(x) median absolute deviation
mean(x) mean
mean(x, trim=a) trimmed mean
median(x) median
quantile(x, probs) sample quantile at given probabilities
range(x) the range, i.e. the vector c(min(x), max(x))
stem(x) stem-and-leaf-plot
t.test(x,...) One or two sample Student’s t-test
var(x) variance of x or covariance matrix of x
var(x,y) covariance
var.test(x,y) test on variance equality of x and y

Table 5.1: Some functions that calculate statistical summaries.

The remainder of this sub section will give some examples of the above functions.

58

CHAPTER 5. STATISTICS 5.1. BASIC STATISTICAL FUNCTIONS

quantiles

The quantile function needs two vectors as input. The first one contains the obser-
vations, the second one contains the probabilities corresponding to the quantiles. The
function returns the empirical quantiles of the first data vector. To calculate the 5 and
10 percent quantile of a sample from a N(0,1) distribution, proceed as follows:

> x <- rnorm(100)

> xq <- quantile(x,c(0.05, 0.5, 1))

> xq

5% 50% 100%

-1.4434225 -0.0535039 3.1840445

The function returns a vector with the quantiles as named elements.

summary

The function summary is convenient for calculating basic statistics of columns of a data
frame.

> summary(mtcars)

mpg cyl disp hp

Min. :10.40 Min. :4.000 Min. : 71.1 Min. : 52.0

1st Qu.:15.43 1st Qu.:4.000 1st Qu.:120.8 1st Qu.: 96.5

Median :19.20 Median :6.000 Median :196.3 Median :123.0

Mean :20.09 Mean :6.188 Mean :230.7 Mean :146.7

3rd Qu.:22.80 3rd Qu.:8.000 3rd Qu.:326.0 3rd Qu.:180.0

Max. :33.90 Max. :8.000 Max. :472.0 Max. :335.0

drat wt qsec vs

Min. :2.760 Min. :1.513 Min. :14.50 Min. :0.0000

1st Qu.:3.080 1st Qu.:2.581 1st Qu.:16.89 1st Qu.:0.0000

Median :3.695 Median :3.325 Median :17.71 Median :0.0000

Mean :3.597 Mean :3.217 Mean :17.85 Mean :0.4375

3rd Qu.:3.920 3rd Qu.:3.610 3rd Qu.:18.90 3rd Qu.:1.0000

Max. :4.930 Max. :5.424 Max. :22.90 Max. :1.0000

am gear carb

Min. :0.0000 Min. :3.000 Min. :1.000

1st Qu.:0.0000 1st Qu.:3.000 1st Qu.:2.000

Median :0.0000 Median :4.000 Median :2.000

Mean :0.4062 Mean :3.688 Mean :2.812

3rd Qu.:1.0000 3rd Qu.:4.000 3rd Qu.:4.000

Max. :1.0000 Max. :5.000 Max. :8.000

59

CHAPTER 5. STATISTICS 5.2. REGRESSION MODELS

5.2 Regression models

5.2.1 Linear regression models

R can fit linear regression models of the form

y = β0 + β1x1 + · · ·+ βpxp + ε

where β = (β0, · · · , βp) are the intercept and p regression coefficients and x1, · · · , xp the
p regression variables. The error term ε has mean zero and is often modeled as a normal
distribution with some variance.

For two regression variables you can use the function lm with the following formula

y ~ x1 + x2

By default R includes the intercept of the linear regression model. To omit the intercept
use the formula:

y ~ -1 + x1 + x2

Be aware of the special meaning of the operators *, -, ^, \ and : in linear model
formulae. They are not used for the normal multiplication, subtraction, power and
division.

The : operator is used to model interaction terms in linear models.

> fit <- lm(100/mpg ~ hp + wt, data=mtcars)

> fit

Call:

lm(formula = 100/mpg ~ hp + wt, data = mtcars)

Coefficients:

(Intercept) hp wt

0.63051 0.00748 1.14853

The function summary is convenient for calculating basic statistics on lm fit.

> summary(fit)

60

CHAPTER 5. STATISTICS 5.2. REGRESSION MODELS

Call:

lm(formula = 100/mpg ~ hp + wt, data = mtcars)

Residuals:

Min 1Q Median 3Q Max

-1.68690 -0.49601 0.07663 0.40027 1.42186

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.630513 0.409363 1.540 0.13435

hp 0.007479 0.002312 3.235 0.00303 **

wt 1.148525 0.162009 7.089 8.45e-08 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.664 on 29 degrees of freedom

Multiple R-squared: 0.8471, Adjusted R-squared: 0.8365

F-statistic: 80.33 on 2 and 29 DF, p-value: 1.494e-12

The function plot plot basic diagnostic statistics on an lm fit.

> plot(fit, which = 2)

61

Bibliography

[1] L. Longhow, An Introduction to RâĂİ. 2010.

[2] Longhow Lam, A guide to Eclipse and the R plug-in StatET. www.splusbook.com,
2007.

[3] Diethelm Würtz, “S4 ‘timedate’ and ‘timeseries’ classes for R,” Journal of Statistical
Software.

[4] W. N. Venables and B. D. Ripley, Modern Applied Statistics with S. Springer, Septem-
ber 2003.

[5] J. Maindonald and J. Braun, Data Analysis and Graphics Using R: An Example-
based Approach. Cambridge University Press, 2007.

62

Index

array, 41
as.difftime, 32
as.list, 48

c, 34
character, 25
chol, 40
complex, 32
conflicting objects, 15
conflicts, 15
csv files, 49

data frames, 41
Deducer, 20
delimited files, 49
difftime, 31
dim, 38
double, 24

eclipse, 17
Excel files, 51

factor, 28
FALSE, 26

head, 56
help, 11
help, 24

import data, 49
integer, 27
is.infinite, 33
is.na, 32
is.nan, 32

level, 28
levels, 28
Linear regression, 60

lists, 44
logical, 26

masked objects, 15
Mathematical operators, 34
matrix, 37

NA, 32
NaN, 32
NULL, 33

ordered factors, 29

package, 13
POSIXct, 30
POSIXlt, 30

Rcmdr, 19
read.table, 49
Recycling, 35
rep, 37
round, 34
rstudio, 16

scan, 50
search, 14
search path, 14
sequences, 36
sessionInfo, 14
solve, 40
statistical summary functions, 58
str, 48
strptime, 31
structure, 48
subset, 56
subset, 57
svd, 40
Sys.time, 32

63

Index Index

tail, 56
text files, 49
The Foreign package, 51
time-series, 43
Tinn-R, 18
transpose, 39
TRUE, 26
tsp, 44
typeof, 24

vector, 34
vector subscripts, 52

working directory, 13
workspace image, 13

64

	Introduction
	What is R?
	The R environment
	Obtaining and installing R
	Your first R session
	The available help
	The on line help
	The R mailing lists and the R Journal

	The R workspace, managing objects
	R Packages
	Conflicting objects
	Editors for R scripts, notebook graphical user interfaces
	The editor in RGui
	Other editors

	Menus and dialog boxes graphical user interfaces

	Data Objects
	Data types
	Double
	Character
	Logical
	Integer
	Factor
	Dates and Times
	Complex
	Missing data and Infinite values

	Data structures
	Vectors
	Matrices
	Arrays
	Data frames
	Time-series objects
	Lists
	The str function

	Importing data
	Text files
	The scan function

	Excel files
	The Foreign package

	Data Manipulation
	Vector subscripts
	Matrix subscripts
	Manipulating Data frames
	Extracting data from data frames

	Statistics
	Basic statistical functions
	Statistical summaries and tests

	Regression models
	Linear regression models

	Bibliography
	Index

